Monthly Archives: February 2017

The extremely high resolution of 3 D printers

Today’s 3-D printers have a resolution of 600 dots per inch, which means that they could pack a billion tiny cubes of different materials into a volume that measures just 1.67 cubic inches.

Such precise control of printed objects’ microstructure gives designers commensurate control of the objects’ physical properties — such as their density or strength, or the way they deform when subjected to stresses. But evaluating the physical effects of every possible combination of even just two materials, for an object consisting of tens of billions of cubes, would be prohibitively time consuming.

So researchers at MIT’s Computer Science and Artificial Intelligence Laboratory (CSAIL) have developed a new design system that catalogues the physical properties of a huge number of tiny cube clusters. These clusters can then serve as building blocks for larger printable objects. The system thus takes advantage of physical measurements at the microscopic scale, while enabling computationally efficient evaluation of macroscopic designs.

“Conventionally, people design 3-D prints manually,” says Bo Zhu, a postdoc at CSAIL and first author on the paper. “But when you want to have some higher-level goal — for example, you want to design a chair with maximum stiffness or design some functional soft [robotic] gripper — then intuition or experience is maybe not enough. Topology optimization, which is the focus of our paper, incorporates the physics and simulation in the design loop. The problem for current topology optimization is that there is a gap between the hardware capabilities and the software. Our algorithm fills that gap.”

Zhu and his MIT colleagues presented their work this week at Siggraph, the premier graphics conference. Joining Zhu on the paper are Wojciech Matusik, an associate professor of electrical engineering and computer science; Mélina Skouras, a postdoc in Matusik’s group; and Desai Chen, a graduate student in electrical engineering and computer science.

Points in space

The MIT researchers begin by defining a space of physical properties, in which any given microstructure will assume a particular location. For instance, there are three standard measures of a material’s stiffness: One describes its deformation in the direction of an applied force, or how far it can be compressed or stretched; one describes its deformation in directions perpendicular to an applied force, or how much its sides bulge when it’s squeezed or contract when it’s stretched; and the third measures its response to shear, or a force that causes different layers of the material to shift relative to each other.

Those three measures define a three-dimensional space, and any particular combination of them defines a point in that space.

Focuses on marine microbes and microbial communities

Microbes mediate the global marine cycles of elements, modulating atmospheric carbon dioxide and helping to maintain the oxygen we all breathe, yet there is much about them scientists still don’t understand. Now, an award from the Simons Foundation will give researchers from MIT’s Darwin Project access to bigger, better computing resources to model these communities and probe how they work.

The simulations of plankton populations made by Darwin Project researchers have become increasingly computationally demanding. MIT Professor Michael “Mick” Follows and Principal Research Engineer Christopher Hill, both affiliates of the Darwin Project, were therefore delighted to learn of their recent Simons Foundation award, providing them with enhanced compute infrastructure to help execute the simulations of ocean circulation, biogeochemical cycles, and microbial population dynamics that are the bread and butter of their research.

The Darwin Project, an alliance between oceanographers and microbiologists in the MIT Department of Earth, Atmospheric and Planetary Sciences (EAPS) and the Parsons Lab in the MIT Department of Civil and Environmental Engineering, was conceived as an initiative to “advance the development and application of novel models of marine microbes and microbial communities, identifying the relationships of individuals and communities to their environment, connecting cellular-scale processes to global microbial community structure” with the goal of coupling “state of the art physical models of global ocean circulation with biogeochemistry and genome-informed models of microbial processes.”

In response to increases in model complexity and resolution over the course of past decade since the project’s inception in 2007, computational demands have ballooned. Increased fidelity and algorithmic sophistication in both biological and fluid dynamical component models and forays into new statistical analysis approaches, leveraging big-data innovations to analyze the simulations and field data, have grown inexorably.